On Randomly Projected Hierarchical Clustering with Guarantees

نویسندگان

  • Johannes Schneider
  • Michail Vlachos
چکیده

1 Hierarchical clustering (HC) algorithms are generally limited to small data instances due to their runtime costs. Here we mitigate this shortcoming and explore fast HC algorithms based on random projections for single (SLC) and average (ALC) linkage clustering as well as for the minimum spanning tree problem (MST). We present a thorough adaptive analysis of our algorithms that improve prior work from O(N) by up to a factor of N/(logN) for a dataset ofN points in Euclidean space. The algorithms maintain, with arbitrary high probability, the outcome of hierarchical clustering as well as the worst-case running-time guarantees. We also present parameter-free instances of our algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

روش نوین خوشه‌بندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی

Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...

متن کامل

Hierarchical Clustering using Randomly Selected Similarities

The problem of hierarchical clustering items from pairwise similarities is found across various scientific disciplines, from biology to networking. Often, applications of clustering techniques are limited by the cost of obtaining similarities between pairs of items. While prior work has been developed to reconstruct clustering using a significantly reduced set of pairwise similarities via adapt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014